The University of Jordan School of Engineering Department of Electrical Engineering 1st Semester – A.Y. 2017/2018

Course code:	rse code: 0923783 rse title: Power system stability and control	
Course title:		
Credit hours:	3	
Course describtion:	• Synchronous machine characteristics: steady-state and Transient's analysis, introduction to power system stability: rotor angle stability, voltage stability, long and short term stability. Stability problem: swing equation, steady state stability, small disturbances, and transient stability. Power system control: introduction to basic control loops. Load frequency control: generator model, load model, prime mover model, governor model. Automatic generation control. Reactive power and voltage control: amplifier model, excitation system stabilizer rate feedback. Excitation system stabilizer PID controller.	
Prerequisites by		
Course:	None	
Prerequisites	Students are assumed to have a background in the following topics:	
By Topic:	Basic circuit analysis techniques.	
	Basic electromagnetic and machines concepts.	
	• Basic control meory concepts.	
Textbook:	Power system stability and control, P.Kundur, 1994, McGraw-Hill.	
References: Schedule & Duration:	 Power System Analysis, Hadi Saadat, 2nd Edition, McGraw-Hill. Power system analysis, W.D. Stevenson & J.J. Grainger, 1994, McGraw-Hill. Power generation, operation and control, A.J. Wood and B.F. Wollenberg, 1983, Wiley. Power system dynamics, stability and control, J. Machawski, J. Bialek, J. Bumby, 2008, Wiley. Dynamic simulation of electric machinary using MATLAB/SIMULINK, C. Ong, 1998, PTR Prentice-Hall. 16 Weeks, 42 contact hours (50 minutes each) including exams. 	
Minimum Student	Textbook, class handouts, scientific calculator, and an access to a personal	
Material:	computer.	
Minimum College Facilities:	Classroom with whiteboard and projection display facilities, library, and computational facilities with MATLAB.	
Course Objectives:	 This is an advanced course to Power systems stability provided by the department of Electrical Engineering for the Electrical Engineering masters students. It is designed to achieve the following objectives: Introduce the concept of power system stability problem. Study the synchronous machine internal and external characteristics. Understand the advanced topics of power systems control. 	

• Solve simulation-based stability and control problems.

Course Learning Outcomes and Relation to Program Learning Outcomes:

Upon successful completion of this course, a student should:

- 1 -		
1.	Understand the stability problem and its importance to the system availability (stability).	[i,ii]
2.	Realize the relationship between the stability problem and power system relaying.	[i,iii]
3.	Review the basic concepts in state space control and matrices transformation.	[i,iii]
4.	Be familiar with power system components: the generator, excitation systems, controllers, loads,	[iii]
	and relaying systems.	
5.	Be able to design excitation system stabilizers.	[iiii]
6.	Be familiar with synchronous machine external and internal problems.	[i,ii]
7.	Recognize the concept of AGC control.	[iii]

Program learning outcomes

- i Demonstate a sound, in-depth and up-to-date technical knowledge in the field of specialization.
- ii Ability to identify and solve engineering problems in their chosen field of study.
- iii Acquir the skills for continued professional development and independent self-study.
- Demonstrate the ability to communicate technical information effectively and professionally iv both orally and in writing ..

Course Topics:

	Topic Description	Hrs
1.	Synchronous machine characteristics: Steady-state and transients analysis, Parks' transformation,	9
	transient phenomena, balanced three phase short circuit, unbalanced short circuit.	
2.	Introduction to power system stability problem: Rotor angle stability, voltage stability, long and short	3
	term stability.	
3.	Stability problem: Swing equation, steady state stability, small disturbances, transient stability: Equal	9
	area criterion.	
4.	Numerical solution for the swing equation, multi-machine systems, multi machine transient stability.	6
5.	Power system control: Introduction to basic control loops.	3

- Load frequency control: generator model, load model, prime mover model, governor model. Automatic 9 6. generation control (AGC): AGC in a single area system, AGC in multiarea systems.
- 7. Reactive power and voltage control: Amplifier model, exciter model, generator model, excitation system 6 stabilizer rate feedback. Excitation system stabilizer PID controller.

Ground Rules:	Attendance is mandatory and highly encour- every lecture. All exams (including the final e	ndance is mandatory and highly encouraged. To that end, attendance will be taken <i>y</i> lecture. All exams (including the final exam) should be considered cumulative .		
Ssessments: Exams, Projects, and term Papers.				
Grading policy:	Projects and term papers	30 %		
	Midterm Exam	30 %		
	Final Exam	40 %		
	Total	100%		

Last Updated: 3/27/17